skip to main content


Search for: All records

Creators/Authors contains: "Chang, Jeffrey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Omicron BA.1 variant of SARS-CoV-2 escapes convalescent sera and monoclonal antibodies that are effective against earlier strains of the virus. This immune evasion is largely a consequence of mutations in the BA.1 receptor binding domain (RBD), the major antigenic target of SARS-CoV-2. Previous studies have identified several key RBD mutations leading to escape from most antibodies. However, little is known about how these escape mutations interact with each other and with other mutations in the RBD. Here, we systematically map these interactions by measuring the binding affinity of all possible combinations of these 15 RBD mutations (2 15 =32,768 genotypes) to 4 monoclonal antibodies (LY-CoV016, LY-CoV555, REGN10987, and S309) with distinct epitopes. We find that BA.1 can lose affinity to diverse antibodies by acquiring a few large-effect mutations and can reduce affinity to others through several small-effect mutations. However, our results also reveal alternative pathways to antibody escape that does not include every large-effect mutation. Moreover, epistatic interactions are shown to constrain affinity decline in S309 but only modestly shape the affinity landscapes of other antibodies. Together with previous work on the ACE2 affinity landscape, our results suggest that the escape of each antibody is mediated by distinct groups of mutations, whose deleterious effects on ACE2 affinity are compensated by another distinct group of mutations (most notably Q498R and N501Y). 
    more » « less
  2. Abstract

    The Omicron BA.1 variant emerged in late 2021 and quickly spread across the world. Compared to the earlier SARS-CoV-2 variants, BA.1 has many mutations, some of which are known to enable antibody escape. Many of these antibody-escape mutations individually decrease the spike receptor-binding domain (RBD) affinity for ACE2, but BA.1 still binds ACE2 with high affinity. The fitness and evolution of the BA.1 lineage is therefore driven by the combined effects of numerous mutations. Here, we systematically map the epistatic interactions between the 15 mutations in the RBD of BA.1 relative to the Wuhan Hu-1 strain. Specifically, we measure the ACE2 affinity of all possible combinations of these 15 mutations (215 = 32,768 genotypes), spanning all possible evolutionary intermediates from the ancestral Wuhan Hu-1 strain to BA.1. We find that immune escape mutations in BA.1 individually reduce ACE2 affinity but are compensated by epistatic interactions with other affinity-enhancing mutations, including Q498R and N501Y. Thus, the ability of BA.1 to evade immunity while maintaining ACE2 affinity is contingent on acquiring multiple interacting mutations. Our results implicate compensatory epistasis as a key factor driving substantial evolutionary change for SARS-CoV-2 and are consistent with Omicron BA.1 arising from a chronic infection.

     
    more » « less
  3. null (Ed.)
  4. Over the past two decades, several broadly neutralizing antibodies (bnAbs) that confer protection against diverse influenza strains have been isolated. Structural and biochemical characterization of these bnAbs has provided molecular insight into how they bind distinct antigens. However, our understanding of the evolutionary pathways leading to bnAbs, and thus how best to elicit them, remains limited. Here, we measure equilibrium dissociation constants of combinatorially complete mutational libraries for two naturally isolated influenza bnAbs (CR9114, 16 heavy-chain mutations; CR6261, 11 heavy-chain mutations), reconstructing all possible evolutionary intermediates back to the unmutated germline sequences. We find that these two libraries exhibit strikingly different patterns of breadth: while many variants of CR6261 display moderate affinity to diverse antigens, those of CR9114 display appreciable affinity only in specific, nested combinations. By examining the extensive pairwise and higher order epistasis between mutations, we find key sites with strong synergistic interactions that are highly similar across antigens for CR6261 and different for CR9114. Together, these features of the binding affinity landscapes strongly favor sequential acquisition of affinity to diverse antigens for CR9114, while the acquisition of breadth to more similar antigens for CR6261 is less constrained. These results, if generalizable to other bnAbs, may explain the molecular basis for the widespread observation that sequential exposure favors greater breadth, and such mechanistic insight will be essential for predicting and eliciting broadly protective immune responses. 
    more » « less
  5. null (Ed.)
    Multiobjective optimization problems (MOPs) are common across many science and engineering fields. A multiobjective optimization algorithm (MOA) seeks to provide an approximation to the tradeoff surface between multiple, possibly conflicting, objectives. Many MOPs are the result of objective functions that require the evaluation of a computationally expensive numerical simulation. Solving these large and complex problems requires efficient coordination between the MOA and the computationally expensive cost functions. In this work, a recently proposed MOA is integrated into the libEnsemble software library, which coordinates extreme scale resources for large ensemble computations. Efficient integration requires fundamental changes to the underlying MOA. The convergence and performance results for the integrated and original MOA are compared on a set of benchmark problems. 
    more » « less
  6. null (Ed.)
    Variability in the execution time of computing tasks can cause load imbalance in high-performance computing (HPC) systems. When configuring system- and application-level parameters, engineers traditionally seek configurations that will maximize the mean computational throughput. In an HPC setting, however, high-throughput configurations that do not account for performance variability could result in poor load balancing. In order to determine the effects of performance variance on computationally expensive numerical simulations, the High-Performance LINPACK solver is optimized by using multiobjective optimization to maximize the mean and minimize the standard deviation of the computational throughput on the High-Performance LINPACK benchmark. We show that specific configurations of the solver can be used to control for variability at a small sacrifice in mean throughput. We also identify configurations that result in a relatively high mean throughput, but also result in a high throughput variability. 
    more » « less
  7. null (Ed.)
  8. null (Ed.)
    Abstract Background The mechanism by which immune cells regulate metastasis is unclear. Understanding the role of immune cells in metastasis will guide the development of treatments improving patient survival. Methods We used syngeneic orthotopic mouse tumour models (wild-type, NOD/scid and Nude), employed knockout ( CD8 and CD4 ) models and administered CXCL4. Tumours and lungs were analysed for cancer cells by bioluminescence, and circulating tumour cells were isolated from blood. Immunohistochemistry on the mouse tumours was performed to confirm cell type, and on a tissue microarray with 180 TNBCs for human relevance. TCGA data from over 10,000 patients were analysed as well. Results We reveal that intratumoral immune infiltration differs between metastatic and non-metastatic tumours. The non-metastatic tumours harbour high levels of CD8 + T cells and low levels of platelets, which is reverse in metastatic tumours. During tumour progression, platelets and CXCL4 induce differentiation of monocytes into myeloid-derived suppressor cells (MDSCs), which inhibit CD8 + T-cell function. TCGA pan-cancer data confirmed that CD8 low Platelet high patients have a significantly lower survival probability compared to CD8 high Platelet low . Conclusions CD8 + T cells inhibit metastasis. When the balance between CD8 + T cells and platelets is disrupted, platelets produce CXCL4, which induces MDSCs thereby inhibiting the CD8 + T-cell function. 
    more » « less